TL Consulting Group

machine learning

Key Considerations for Data Ingestion into the Data Lakehouse

For organisations building Data Lakehouse platforms, an important consideration is defining a structured approach to designing data ingestion patterns, encompassing best practices for each data workload that is ingested into the Data Lakehouse environment. This is crucial for organisations looking to scale with big data analytics and enable more data consumers to perform efficient decision-making, with access to enriched data in real-time. In this article, we explore some of the best practices, key considerations and common pitfalls to avoid when defining the data ingestion patterns into the Data Lakehouse platform. The Data Lakehouse Paradigm The Data Lakehouse is a modern architecture that merges the expansive storage of a Data Lake with the structured data management of a Data Warehouse. The Data Lakehouse is the latest paradigm in Data Platform Architecture, combining the capabilities and benefits of the Data Warehouse and Data Lake into a flexible, comprehensive, and unified platform to serve many use cases including: Defining the data ingestion design patterns for the Data Lakehouse requires defining a structured approach to collect and manage data workloads in the lakehouse while ensuring there are robust data quality and security controls in place as part of the data ingestion. Key Considerations for Data Ingestion Patterns: Common Pitfalls to Avoid Conclusion In summary, the Data Lakehouse is a pathway to unlocking the full potential of your data, fostering innovation, and driving business growth. With the right components and strategic approach, your organisation can leverage Data Lakehouses to stay ahead of the curve, while maintaining a unified, cost-effective data platform deployed on your Cloud environment. Designing correct data ingestion patterns will enable the Data Lakehouse platform to run efficient and scalable data pipelines to serve big data analytics use cases. TL Consulting are a solutions partner with Microsoft in the Data & AI domain. We offer specialised and cost-effective data analytics & engineering services tailored to our customer’s needs to extract maximum business value. Our certified cloud platform & data engineering team are tool-agnostic and have high proficiency working with traditional and cloud-based data platforms. Refer to our service capabilities to find out more.

Key Considerations for Data Ingestion into the Data Lakehouse Read More »

Data & AI, , , , , , , ,

Decoding Data Mesh: A Technical Exploration

In the ever-evolving landscape of data management, traditional centralised approaches often fall short of addressing the challenges posed by the increasing scale and complexity of modern data ecosystems. Enter Data Mesh, a paradigm shifts in data architecture that reimagines data as a product and decentralises data ownership and architecture. In this technical blog, we aim to start decoding Data Mesh, exploring its key concepts, principles, and market insights. What is Data Mesh? At its core, the Data Mesh is a sociotechnical approach to building a decentralised data architecture. Think of it as a web of interconnected data products owned and served by individual business domains. Each domain team owns its data, from ingestion and transformation to consumption and analysis. This ownership empowers them to manage their data with agility and cater to their specific needs. Key Principles of Data Mesh: The following diagram illustrates an example modern data ecosystem hosted on Microsoft Azure that various business domains can operationalise, govern and own independently to serve their own data analytics use cases. Challenges and Opportunities: Despite these challenges, the opportunities outweigh the hurdles. The Data Mesh offers unparalleled benefits, including: Benefits of Adopting a Data Mesh: Future Trends and Considerations: The Data Mesh is more than just a trendy architectural concept; it’s rapidly evolving into a mainstream approach for managing data in the digital enterprise. To truly understand its significance, let’s delve into some key market insights: Growing Market Value: Conclusion: In conclusion, Data Mesh represents a paradigm shift in how organisations approach data architecture and management. By treating data as a product and decentralising ownership, Data Mesh addresses the challenges of scale, complexity, and agility in modern data ecosystems. Implementing Data Mesh requires a strategic approach, embracing cultural change, and leveraging the right set of technologies to enable decentralised, domain-oriented data management. As organisations continue to grapple with the complexities of managing vast amounts of data, Data Mesh emerges as a promising framework to navigate this new frontier.

Decoding Data Mesh: A Technical Exploration Read More »

Data & AI, , , , ,
data-lakehouse

Harnessing the Power of the Data Lakehouse

As organisations continue to collect more diverse data, it is important to consider a strategic & viable approach to unify and streamline big data analytics workloads, ensuring it is optimised to drive data-driven decisions and enable teams to continue innovating and create a competitive edge. Traditionally, data warehousing has supported the need for ingesting and storing structured data, and the data lake as a separate platform for storing semi-structured/unstructured data. The data lakehouse combines the benefits and capabilities between both and bridges the gap by breaking silos created by the traditional/modern data warehouse, enabling a flexible and modern data platform to serve big data analytics, machine learning & AI workloads in a uniform manner. What is a Data Lakehouse? A data lakehouse is a modern architecture that merges the expansive storage of a data lake with the structured data management of a data warehouse. Data lakehouse platforms offer a comprehensive & flexible solution for big data analytics including Data Engineering and real-time streaming, Data Science, and Machine Learning along with Data Analytics and AI. Key Benefits of Implementing a Data Lakehouse: There are many benefits that can be derived from implementing a data lakehouse correctly: Azure Data Lakehouse Architecture: The following are some of the key services/components that constitute a typical Data Lakehouse platform hosted on Microsoft Azure: Key Considerations when transitioning to a Data Lakehouse: The following are key considerations that need to be factored in when transitioning or migrating from traditional data warehouses/data lakes to the Data Lakehouse: Implementing a Data Lakehouse: Quick Wins for Success The following are small, actionable steps that organisations can take when considering to implement a Data Lakehouse platform: Conclusion In summary, the data lakehouse is a pathway to unlocking the full potential of your data, fostering innovation, and driving business growth. With the right components and strategic approach, your organisation can leverage Data Lakehouses to stay ahead of the curve, while maintaining a unified, cost-effective data platform deployed on your Cloud environment. TL Consulting are a solutions partner with Microsoft in the Data & AI domain. We offer specialised and cost-effective data analytics & engineering services tailored to our customer’s needs to extract maximum business value. Our certified cloud platform & data engineering team are tool-agnostic and have high proficiency working with traditional and cloud-based data platforms and open-source tools. Refer to our service capabilities to find out more.

Harnessing the Power of the Data Lakehouse Read More »

Cloud-Native, Data & AI, , , , , , , , , , , ,

How Exploratory Data Analysis (EDA) Can Improve Your Data Understanding Capability

How Exploratory Data Analysis (EDA) Can Improve Your Data Understanding Capability Can EDA help to make my phone upgrade decision more precise? You may have heard the term Exploratory Data Analysis (or EDA for short) and wondered what EDA is all about. Recently, one of the Sales team members at TL Consulting Group were thinking of buying a new phone but they were overwhelmed by the many options and they needed to make a decision suited best to their work needs, i.e. Wait for the new iPhone or make an upgrade on the current Android phone. There can be no disagreement on the fact that doing so left them perplexed and with a number of questions that needed to be addressed before making a choice. What was the specification of the new phone and how was that phone better than their current mobile phone? To help enable curiosity and decision-making, they visited YouTube to view the new iPhone trailer and also learned more about the new iPhone via user ratings and reviews from YouTube and other websites. Then they came and asked us how we would approach it from a Data Analytics perspective in theory. And our response was, whatever investigating measures they had already taken before making the decision, this is nothing more but what ML Engineers/data analysts in their lingo call ‘Exploratory Data Analysis’. What is Exploratory Data Analysis? In an automated data pipeline, exploratory data analysis (EDA) entails using data visualisation and statistical tools to acquire insights and knowledge from the data as it travels through the pipeline. At each level of the pipeline, the goal is to find patterns, trends, anomalies, and potential concerns in the data. Exploratory Data Analysis Lifecycle To interpret the diagram and the iPhone scenario in mind, you can think of all brand-new iPhones as a “population” and to make its review, the reviewers will take some iPhones from the market which you can say is a “sample”. The reviewers will then experiment with that phone and will apply different mathematical calculations to define the “probability” if that phone is worth buying or not. It will also help to define all the good and bad properties of the new iPhone which is called “Inference “. Finally, all these outcomes will help potential customers to make their decision with confidence. Benefits of Exploratory Data Analysis The main idea of exploratory data analysis is “Garbage in, Perform Exploratory Data Analysis, possibly Garbage out.” By conducting EDA, it is possible to turn an almost usable dataset into a completely usable dataset. It includes: Key Steps of EDA The key steps involved in conducting EDA on an automated data pipeline are: Types of Exploratory Data Analysis EDA builds a robust understanding of the data, and issues associated with either the info or process. It’s a scientific approach to getting the story of the data. There are four main types of exploratory data analysis which are listed below: 1. Univariate Non-Graphical Let’s say you decide to purchase a new iPhone solely based on its battery size, disregarding all other considerations. You can use univariate non-graphical analysis which is the most basic type of data analysis because we only utilize one variable to gather the data. Knowing the underlying sample distribution and data and drawing conclusions about the population are the usual objectives of univariate non-graphical EDA. Additionally included in the analysis is outlier detection. The traits of population dispersal include: Spread: Spread serves as a gauge for how far away from the Centre we should search for the information values. Two relevant measurements of spread are the variance and the quality deviation. Because the variance is the root of the variance, it is defined as the mean of the squares of the individual deviations. Central tendency: Typical or middle values are related to the central tendency or position of the distribution. Statistics with names like mean, median, and sometimes mode are valuable indicators of central tendency; the mean is the most prevalent. The median may be preferred in cases of skewed distribution or when there is worry about outliers. Skewness and kurtosis: The distribution’s skewness and kurtosis are two more useful univariate characteristics. When compared to a normal distribution, kurtosis and skewness are two different measures of peakedness. 2. Multivariate Non-Graphical Think about a situation where you want to purchase a new iPhone solely based on the battery capacity and phone size. In either cross-tabulation or statistics, multivariate non-graphical EDA techniques are frequently used to illustrate the relationship between two or more variables. An expansion of tabulation known as cross-tabulation is very helpful for categorical data. By creating a two-way table with column headings that correspond to the amount of one variable and row headings that correspond to the amount of the opposing two variables, a cross-tabulation is preferred for two variables. All subjects that share an analogous pair of levels are then included in the counts. For each categorical variable and one quantitative variable, we create statistics for quantitative variables separately for every level of the specific variable then compare the statistics across the amount of categorical variable. It is possible that comparing medians is a robust version of one-way ANOVA, whereas comparing means is a quick version of ANOVA. 3. Univariate Graphical Different Univariate Graphics Imagine that you only want to know the latest iPhone’s speed based on its CPU benchmark results before you decide to purchase it. Since graphical approaches demand some level of subjective interpretation in addition to being quantitative and objective, they are utilized more frequently than non-graphical methods because they can provide a comprehensive picture of the facts. Some common sorts of univariate graphics are: Boxplots: Boxplots are excellent for displaying data on central tendency, showing reliable measures of location and spread, as well as information on symmetry and outliers, but they can be deceptive when it comes to multimodality. The type of side-by-side boxplots is among the simplest applications for boxplots. Histogram: A histogram, which can be a barplot

How Exploratory Data Analysis (EDA) Can Improve Your Data Understanding Capability Read More »

Data & AI, , , , , , , , ,